
Chapter

IV-6
IV-6Interacting with the User

Overview.. 132
Modal and Modeless User Interface Techniques .. 132

The Simple Input Dialog.. 132
Pop-Up Menus in Simple Dialogs ... 133
Saving Parameters for Reuse.. 135
Multiple Simple Input Dialogs .. 135
Help For Simple Input Dialogs.. 136

Displaying an Open File Dialog.. 136
Prompt Does Not Work on Macintosh.. 137

Displaying a Multi-Selection Open File Dialog... 137
Open File Dialog File Filters... 137

Displaying a Save File Dialog ... 138
Save File Dialog File Filters .. 139

Using Open in a Utility Routine ... 139
Pause For User... 140

PauseForUser Simple Cursor Example .. 140
PauseForUser Advanced Cursor Example .. 142
PauseForUser Control Panel Example.. 143

Progress Windows .. 144
Control Panels and Event-Driven Programming... 146
Detecting a User Abort... 148
Creating a Contextual Menu ... 149
Cursors as Input Device... 150
Marquee Menu as Input Device.. 151
Polygon as Input Device .. 151

Chapter IV-6 — Interacting with the User

IV-132

Overview
The following sections describe the various programming techniques available for getting input from and
for interacting with a user during the execution of your procedures. These techniques include:
• The simple input dialog
• Control panels
• Cursors
• Marquee menus

The simple input dialog provides a bare bones but functional user interfaces with just a little programming.
In situations where more elegance is required, control panels provide a better solution.

Modal and Modeless User Interface Techniques
Before the rise of the graphical user interface, computer programs worked something like this:

1. The program prompts the user for input.
2. The user enters the input.
3. The program does some processing.
4. Return to step 1.
In this model, the program is in charge and the user must respond with specific input at specific points of
program execution. This is called a “modal” user interface because the program has one mode in which it
will only accept specific input and another mode in which it will only do processing.

The Macintosh changed all this with the idea of event-driven programming. In this model, the computer
waits for an event such as a mouse click or a key press and then acts on that event. The user is in charge and
the program responds. This is called a “modeless” user interface because the program will accept any user
action at any time.

You can use both techniques in Igor. Your program can put up a modal dialog asking for input and then do
its processing or you can use control panels to build a sophisticated modeless event-driven system.

Event-driven programming is quite a bit more work than dialog-driven programming. You have to be able
to handle user actions in any order rather than progressing through a predefined sequence of steps. In real
life, a combination of these two methods is often used.

The Simple Input Dialog
The simple input dialog is a way by which a function can get input from the user in a modal fashion. It is
very simple to program and is also simple in appearance.

A simple input dialog is presented to the user when a DoPrompt statement is executed in a function. Param-
eters to DoPrompt specify the title for the dialog and a list of local variables. For each variable, you must
include a Prompt statement that provides the text label for the variable.

Generally, the simple input dialog is used in conjunction with routines that run when the user chooses an
item from a menu. This is illustrated in the following example which you can type into the procedure
window of a new experiment:
Menu "Macros"

"Calculate Diagonal...", CalcDiagDialog()
End

Function CalcDiagDialog()
Variable x=10,y=20
Prompt x, "Enter X component: " // Set prompt for x param
Prompt y, "Enter Y component: " // Set prompt for y param
DoPrompt "Enter X and Y", x, y

Chapter IV-6 — Interacting with the User

IV-133

if (V_Flag)
return -1 // User canceled

endif

Print "Diagonal=",sqrt(x^2+y^2)
End

If you run the CalcDiagDialog function, you see the following dialog:

If the user presses Continue without changing the default values, “Diagonal= 22.3607” is printed in the
history area of the command window. If the user presses Cancel, nothing is printed because DoPrompt sets
the V_Flag variable to 1 in this case.

The simple input dialog allows for up to 10 numeric or string variables. When more than 5 items are used,
the dialog uses two columns and you may have to limit the length of your Prompt text.

The simple input dialog is unique in that you can enter not only literal numbers or strings but also numeric
expressions or string expressions. Any literal strings that you enter must be quoted.

If the user presses the Help button, Igor searches for a help topic with a name derived from the dialog title.
If such a help topic is not found, then generic help about the simple input dialog is presented. In both cases,
the input dialog remains until the user presses either Continue or Cancel.

Pop-Up Menus in Simple Dialogs
The simple input dialog supports pop-up menus as well as text items. The pop-up menus can contain an
arbitrary list of items such as a list of wave names. To use a pop-up menu in place of the normal text entry
item in the dialog, you use the following syntax in the prompt declaration:
Prompt <variable name>, <title string>, popup <menu item list>

The popup keyword indicates that you want a pop-up menu instead of the normal text entry item. The
menu list specifies the items in the pop-up menu separated by semicolons. For example:
Prompt color, "Select Color", popup "red;green;blue;"

If the menu item list is too long to fit on one line, you can compose the list in a string variable like so:
String stmp= "red;green;blue;"
stmp += "yellow;purple"
Prompt color, "Select Color", popup stmp

The pop-up menu items support the same special characters as the user-defined menu definition (see
Special Characters in Menu Item Strings on page IV-125) except that items in pop-up menus are limited
to 50 characters, keyboard shortcuts are not supported, and special characters are disabled by default.
You can use pop-up menus with both numeric and string parameters. When used with numeric parameters
the number of the item chosen is placed in the variable. Numbering starts from one. When used with string
parameters the text of the chosen item is placed in the string variable.

There are a number of functions, such as the WaveList function (see page V-927) and the TraceNameList
function (see page V-903), that are useful in creating pop-up menus.

Chapter IV-6 — Interacting with the User

IV-134

To obtain a menu item list of all waves in the current data folder, use:
WaveList("*", ";", "")

To obtain a menu item list of all waves in the current data folder whose names end in “_X”, use:
WaveList("*_X", ";", "")

To obtain a menu item list of all traces in the top graph, use:
TraceNameList("", ";", 1)

For a list of all contours in the top graph, use ContourNameList. For a list of all images, use ImageNameList.
For a list of waves in a table, use WaveList.

This next example creates two pop-up menus in the simple input dialog.
Menu "Macros"

"Color Trace...", ColorTraceDialog()
End

Function ColorTraceDialog()
String traceName
Variable color=3
Prompt traceName,"Trace",popup,TraceNameList("",";",1)
Prompt color,"Color",popup,"red;green;blue"
DoPrompt "Color Trace",traceName,color
if(V_Flag)

return 0 // user canceled
endif

if (color == 1)
ModifyGraph rgb($traceName)=(65000, 0, 0)

elseif(color == 2)
ModifyGraph rgb($traceName)=(0, 65000, 0)

elseif(color == 3)
ModifyGraph rgb($traceName)=(0, 0, 65000)

endif
End

If you choose Color Trace from the Macros menu, Igor displays the simple input dialog with two pop-up
menus. The first menu contains a list of all traces in the target window which is assumed to be a graph. The
second menu contains the items red, green and blue with blue (item number 3) initially chosen.

After you choose the desired trace and color from the pop-up menus and click the Continue button, the
function continues execution. The string parameter traceName will contain the name of the trace chosen
from the first pop-up menu. The numeric parameter color will have a value of 1, 2 or 3, corresponding to
red, green and blue.

In the preceding example, we needed a trace name to pass to the ModifyGraph operation. In another
common situation, we need a wave reference to operate on. For example:

Chapter IV-6 — Interacting with the User

IV-135

Menu "Macros"
"Smooth Wave In Graph...",SmoothWaveInGraphDialog()

End

Function SmoothWaveInGraphDialog()
String traceName
Prompt traceName,"Wave",popup,TraceNameList("",";",1)
DoPrompt "Smooth Wave In Graph",traceName

WAVE w = TraceNameToWaveRef("", traceName)
Smooth 5, w

End

The traceName parameter alone is not sufficient to specify which wave we want to smooth because it does
not identify in which data folder the wave resides. The TraceNameToWaveRef function returns a wave ref-
erence which solves this problem.

Saving Parameters for Reuse
It is possible to write a procedure that presents a simple input dialog with default values for the parameters
saved from the last time it was invoked. To accomplish this, we use global variables to store the values
between calls to the procedure. Here is an example that saves one numeric and one string variable.
Function TestDialog()

String saveDF = GetDataFolder(1)
NewDataFolder/O/S root:Packages
NewDataFolder/O/S :TestDialog

Variable num = NumVarOrDefault("gNum", 42)
Prompt num, "Enter a number"
String str = StrVarOrDefault("gStr", "Hello")
Prompt str, "Enter a string"
DoPrompt "test",num,str

Variable/G gNum = num // Save for next time
String/G gStr = str

// Put function body here
Print num,str

SetDataFolder saveDF
End

This example illustrates the NumVarOrDefault and StrVarOrDefault functions. These functions return the
value of a global variable or a default value if the global variable does not exist. 42 is the default value for
gNum. NumVarOrDefault returns 42 if gNum does not exist. If gNum does exist, it returns the value of
gNum. Similarly, “Hello” is the default value for gStr. StrVarOrDefault returns “Hello” if gStr does not
exist. If gStr does exist, it returns the value of gStr.

Multiple Simple Input Dialogs
Prompt statements can be located anywhere within the body of a function and they do not need to be grouped
together, although it will aid code readability if associated Prompt and DoPrompt code is kept together. Func-
tions may contain multiple DoPrompt statements, and Prompt statements can be reused or redefined.

The following example illustrates multiple simple input dialogs and prompt reuse:
Function Example()

Variable a= 123
Variable/C ca= cmplx(3,4)
String s

Prompt a,"Enter a value"
Prompt ca,"Enter complex value"

Chapter IV-6 — Interacting with the User

IV-136

Prompt s,"Enter a string", popup "red;green;blue"
DoPrompt "Enter Values",a,s,ca
if(V_Flag)

Abort "The user pressed Cancel"
endif

Print "a= ",a,"s= ",s,"ca=",ca

Prompt a,"Enter a again please"
Prompt s,"Type a string"
DoPrompt "Enter Values Again", a,s

if(V_Flag)
Abort "The user pressed Cancel"

endif

Print "Now a=",a," and s=",s
End

When this function is executed, it produces two simple input dialogs, one after the other after the user clicks
Continue.

Help For Simple Input Dialogs
You can create, for each simple input dialog, custom help that appears when the user clicks the Help button.
You do so by providing a custom help file with topics that correspond to the titles of your dialogs as spec-
ified in the DoPrompt commands.

If there is no exactly matching help topic or subtopic for a given dialog title, Igor munges the presumptive
topic by replacing underscore characters with spaces and inserting spaces before capital letters in the inte-
rior of the topic. For example, if the dialog title is “ReallyCoolFunction”, and there is no matching help topic
or subtopic, Igor looks for a help topic or subtopic named “Really Cool Function”.

See Creating Your Own Help File on page IV-241 for information on creating custom help files.

Displaying an Open File Dialog
You can display an Open File dialog to allow the user to choose a file to be used with a subsequent com-
mand. For example, the user can choose a file which you will then use in a LoadWave command. The Open
File dialog is displayed using an Open/D/R command. Here is an example:

Function/S DoOpenFileDialog()
Variable refNum
String message = "Select a file"
String outputPath
String fileFilters = "Data Files (*.txt,*.dat,*.csv):.txt,.dat,.csv;"
fileFilters += "All Files:.*;"

Open /D /R /F=fileFilters /M=message refNum
outputPath = S_fileName

return outputPath // Will be empty if user canceled
End

Here the Open operation does not actually open a file but instead displays an Open File dialog. If the user
chooses a file and clicks the Open button, the Open operation returns the full path to the file in the
S_fileName output string variable. If the user cancels, Open sets S_fileName to "".

The /M flag is used to set the prompt message. As of OS X 10.11, Apple no longer shows the prompt message
in the Open File dialog. It continues to work on Windows.

Chapter IV-6 — Interacting with the User

IV-137

The /F flag is used to control the file filter which determines what kinds of files the user can select. This is
explained further under Open File Dialog File Filters.

Prompt Does Not Work on Macintosh
As of OS X 10.11, Apple no longer shows the title bar in the Open File, Choose Folder, and Create Folder
dialogs. Consequently, the prompt specified by the /M flag, which was displayed in the title bar, is no
longer visible. Apple still shows the title bar in the Save File dialog.

Displaying a Multi-Selection Open File Dialog
You can display an Open File dialog to allow the user to choose multiple files to be used with subsequent
commands. The multi-selection Open File dialog is displayed using an Open/D/R/MULT=1 command. The
list of files selected is returned via S_fileName in the form of a carriage-return-delimited list of full paths.

Here is an example:

Function/S DoOpenMultiFileDialog()
Variable refNum
String message = "Select one or more files"
String outputPaths
String fileFilters = "Data Files (*.txt,*.dat,*.csv):.txt,.dat,.csv;"
fileFilters += "All Files:.*;"

Open /D /R /MULT=1 /F=fileFilters /M=message refNum
outputPaths = S_fileName

if (strlen(outputPaths) == 0)
Print "Cancelled"

else
Variable numFilesSelected = ItemsInList(outputPaths, "\r")
Variable i
for(i=0; i<numFilesSelected; i+=1)

String path = StringFromList(i, outputPaths, "\r")
Printf "%d: %s\r", i, path

endfor
endif

return outputPaths // Will be empty if user canceled
End

Here the Open operation does not actually open a file but instead displays an Open File dialog. Because
/MULT=1 was used, if the user chooses one or more files and clicks the Open button, the Open operation
returns the list of full paths to files in the S_fileName output string variable. If the user cancels, Open sets
S_fileName to "".

The list of full paths is delimited with a carriage return character, represented by "\r" in the example above.
We use carriage return as the delimiter because the customary delimiter, semicolon, is a legal character in
a Macintosh file name.

The /M flag is used to set the prompt message. As of OS X 10.11, Apple no longer shows the prompt message
in the Open File dialog. It continues to work on Windows.

The /F flag is used to control the file filter which determines what kinds of files the user can select. This is
explained further under Open File Dialog File Filters.

Open File Dialog File Filters
The Open operation displays the open file dialog if you use the /D/R flags or if the file to be opened is not
fully specified using the pathName and fileNameStr parameters. The Open File dialog includes a file filter
menu that allows the user to choose the type of file to be opened. By default this menus contain "Plain Text
Files" and "All Files". You can use the /T and /F flags to override the default filter behavior.

Chapter IV-6 — Interacting with the User

IV-138

The /T flag uses obsolescent Macintosh file types or file name extensions consisting of a dot plus three char-
acters. The /F flag, added in Igor Pro 6.10, supports file name extensions only (not Macintosh file types) and
extensions can be from one to 31 characters. Procedures written for Igor Pro 6.10 or later should use the /F
flag in most cases but can use /T or both /T and /F. Procedures that must run with Igor Pro 6.0x and earlier
must use the /T flag.

Using the /T=typeStr flag, you specify acceptable Macintosh-style file types represented by four-character
codes (e.g., "TEXT") or acceptable three-character file name extensions (e.g., ".txt"). The pattern "????" means
"any type of file" and is represented by "All Files" in the filter menu.

typeStr may contain multiple file types or extensions (e.g., "TEXTEPSF????" or ".txt.eps????"). Each file type
or extension must be exactly four characters in length. Consequently the /T flag can accommodate only
three-character file name extensions. Each file type or extension creates one entry in the Open File dialog
filter menu.

If you use the /T flag, the Open operation automatically adds a filter for All Files ("????") if you do not add
one explicitly.

Igor maps Macintosh file types to extensions. For example, if you specify /T="TEXT", you can open files with
the extension ".txt" as well as any file whose Macintosh file type property is 'TEXT'. Igor does similar map-
pings for other extensions. See File Types and Extensions on page III-404 for details.

Using the /F=fileFilterStr flag, you specify a filter menu string plus acceptable file name extensions for each
filter. fileFilterStr specifies one or more filters in a semicolon-separated list. For example, this specifies three
filters:

String fileFilters = "Data Files (*.txt,*.dat,*.csv):.txt,.dat,.csv;"
fileFilters += "HTML Files (*.htm,*.html):.htm,.html;"
fileFilters += "All Files:.*;"
Open /F=fileFilters . . .

Each file filter consists of a filter menu string (e.g., "Data Files") followed by a colon, followed by one or
more file name extensions (e.g., ".txt,.dat,.csv") followed by a semicolon. The syntax is rigid - no extra char-
acters are allowed and the semicolons shown above are required. In this example the filter menu would
contain "Data Files" and would accept any file with a ".txt", ".dat", or ".csv" extension. ".*" creates a filter that
accepts any file.

If you use the /F flag, it is up to you to add a filter for All Files as shown above. It is recommended that you
do this.

Displaying a Save File Dialog
You can display a Save File dialog to allow the user to choose a file to be created or overwritten by a subse-
quent command. For example, the user can choose a file which you will then create or overwrite via a Save
command. The Save File dialog is displayed using an Open/D command. Here is an example:

Function/S DoSaveFileDialog()
Variable refNum
String message = "Save a file"
String outputPath
String fileFilters = "Data Files (*.txt):.txt;"
fileFilters += "All Files:.*;"

Open /D /F=fileFilters /M=message refNum
outputPath = S_fileName

return outputPath // Will be empty if user canceled
End

Chapter IV-6 — Interacting with the User

IV-139

Here the Open operation does not actually open a file but instead displays a Save File dialog. If the user
chooses a file and clicks the Save button, the Open operation returns the full path to the file in the
S_fileName output string variable. If the user cancels, Open sets S_fileName to "".

The /M flag is used to set the prompt message. As of OS X 10.11, Apple no longer shows the prompt message
in the Save File dialog. It continues to work on Windows.

The /F flag is used to control the file filter which determines what kinds of files the user can create. This is
explained further under Save File Dialog File Filters.

Save File Dialog File Filters
The Save File dialog includes a file filter menu that allows the user to choose the type of file to be saved. By
default this menus contain "Plain Text File" and, on Windows only, "All Files". You can use the /T and /F
flags to override the default filter behavior.

The /T and /F flags work as explained under Open File Dialog File Filters. Using the /F flag for a Save File
dialog, you would typically specify just one filter plus All Files, like this:

String fileFilters = "Data File (*.dat):.dat;"

fileFilters += "All Files:.*;"

Open /F=fileFilters . . .

The file filter chosen in the Save File dialog determines the extension for the file being saved. For example,
if the "Plain Text Files" filter is selected, the ".txt" extension is added if you don't explicitly enter it in the File
Name edit box. However if you select the "All Files" filter then no extension is automatically added and the
final file name is whatever you enter in the File Name edit box. You should include the "All Files" filter if
you want the user to be able to specify a file name with any extension. If you want to force the file name
extension to an extension of your choice rather than the user's, omit the "All Files" filter.

Using Open in a Utility Routine
To be as general and useful as possible, a utility routine that acts on a file should have a pathName param-
eter and a fileName parameter, like this:

Function ShowFileInfo(pathName, fileName)
String pathName // Name of symbolic path or "" for dialog.
String fileName // File name or "" for dialog.

<Show file info here>
End

This provides flexibility to the calling function. The caller can supply a valid symbolic path name and a
simple leaf name in fileName, a valid symbolic path name and a partial path in fileName, or a full path in
fileName in which case pathName is irrelevant.

If pathName and fileName fully specify the file of interest, you want to just open the file and perform the
requested action. However, if pathName and fileName do not fully specify the file of interest, you want to
display an Open File dialog so the user can choose the file. This is accomplished by using the Open opera-
tion's /D=2 flag.

With /D=2, if pathName and fileName fully specify the file, the Open operation merely sets the S_fileName
output string variable to the full path to the file. If pathName and fileName do not fully specify the file,
Open displays an Open File dialog and then sets the S_fileName output string variable to the full path to
the file. If the user cancels the Open File dialog, Open sets S_fileName to "". In all cases, Open/D=2 just sets
S_fileName and does not actually open the file.

If pathName and fileName specify an alias (Macintosh) or shortcut (Windows), Open/D=2 returns the file ref-
erenced by the alias or shortcut.

Chapter IV-6 — Interacting with the User

IV-140

Here is how you would use Open /D=2.

Function ShowFileInfo(pathName, fileName)
String pathName // Name of symbolic path or "" for dialog.
String fileName // File name or "" for dialog.

Variable refNum

Open /D=2 /R /P=$pathName refNum as fileName // Sets S_fileName

if (strlen(S_fileName) == 0)
Print "ShowFileInfo was canceled"

else
String fullPath = S_fileName
Print fullPath
Open /R refNum as fullPath
FStatus refNum // Sets S_info
Print S_info
Close refNum

endif
End

In this case, we wanted to open the file for reading. To create a file and open it for writing, omit /R from
both calls to Open.

Pause For User
The PauseForUser operation (see page V-626) allows an advanced programmer to create a more sophisti-
cated semimodal user interface. When you invoke it from a procedure, Igor suspends procedure execution
and the user can interact with graph, table or control panel windows using the mouse or keyboard. Execu-
tion continues when the user kills the main window specified in the PauseForUser command.

PauseForUser is fragile because it attempts to create a semi-modal mode which is not supported by the
operating system. For code that needs to be bulletproof, use an alternative modeless approach, if possible.

Pausing execution can serve two purposes. First, the programmer can pause function execution so that the
user can, for example, adjust cursors in a graph window before continuing with a curve fit. In this applica-
tion, the programmer creates a control panel with a continue button that the user presses after adjusting the
cursors in the target graph. Pressing the continue button kills the host control panel (see example below).

In the second application, the programmer may wish to obtain input from the user in a more sophisticated
manner than can be done using DoPrompt commands. This method uses a control panel as the main window
with no optional target window. It is similar to the control panel technique shown above, except that it is modal.

Following are some examples of how you can use the PauseForUser operation (see page V-626) in your own
user functions.

PauseForUser Simple Cursor Example
This example shows how to allow the user to adjust cursors on a graph while a procedure is executing. Most
of the work is done by the UserCursorAdjust function. UserCursorAdjust is called by the Demo function
which first creates a graph and shows the cursor info panel.
This example illustrates two modes of PauseForUser. When called with autoAbortSecs=0, UserCursorAd-
just calls PauseForUser without the /C flag in which case PauseForUser retains control until the user clicks
the Continue button.
When called with autoAbortSecs>0, UserCursorAdjust calls PauseForUser/C. This causes PauseForUser to
handle any pending events and then return to the calling procedure. The procedure checks the V_flag vari-
able, set by PauseForUser, to determine when the user has finished interacting with the graph. PauseFo-

Chapter IV-6 — Interacting with the User

IV-141

rUser/C, which requires Igor Pro 6.1 or later, is for situations where you want to do something while the
user interacts with the graph.
To try this yourself, copy and paste all three routines below into the procedure window of a new experi-
ment and then run the Demo function with a value of 0 and again with a value such as 30.
Function UserCursorAdjust(graphName,autoAbortSecs)

String graphName
Variable autoAbortSecs

DoWindow/F $graphName // Bring graph to front
if (V_Flag == 0) // Verify that graph exists

Abort "UserCursorAdjust: No such graph."
return -1

endif

NewPanel /K=2 /W=(187,368,437,531) as "Pause for Cursor"
DoWindow/C tmp_PauseforCursor // Set to an unlikely name
AutoPositionWindow/E/M=1/R=$graphName // Put panel near the graph

DrawText 21,20,"Adjust the cursors and then"
DrawText 21,40,"Click Continue."
Button button0,pos={80,58},size={92,20},title="Continue"
Button button0,proc=UserCursorAdjust_ContButtonProc
Variable didAbort= 0
if(autoAbortSecs == 0)

PauseForUser tmp_PauseforCursor,$graphName
else

SetDrawEnv textyjust= 1
DrawText 162,103,"sec"
SetVariable sv0,pos={48,97},size={107,15},title="Aborting in "
SetVariable sv0,limits={-inf,inf,0},value= _NUM:10
Variable td= 10,newTd
Variable t0= ticks
Do

newTd= autoAbortSecs - round((ticks-t0)/60)
if(td != newTd)

td= newTd
SetVariable sv0,value= _NUM:newTd,win=tmp_PauseforCursor
if(td <= 10)

SetVariable sv0,valueColor= (65535,0,0),win=tmp_PauseforCursor
endif

endif
if(td <= 0)

DoWindow/K tmp_PauseforCursor
didAbort= 1
break

endif

PauseForUser/C tmp_PauseforCursor,$graphName
while(V_flag)

endif
return didAbort

End

Function UserCursorAdjust_ContButtonProc(ctrlName) : ButtonControl
String ctrlName

DoWindow/K tmp_PauseforCursor // Kill panel
End

Function Demo(autoAbortSecs)

Chapter IV-6 — Interacting with the User

IV-142

Variable autoAbortSecs

Make/O jack;SetScale x,-5,5,jack
jack= exp(-x^2)+gnoise(0.1)
DoWindow Graph0
if(V_Flag==0)

Display jack
ShowInfo

endif

if (UserCursorAdjust("Graph0",autoAbortSecs) != 0)
return -1

endif

if (strlen(CsrWave(A))>0 && strlen(CsrWave(B))>0)// Cursors are on trace?
CurveFit gauss,jack[pcsr(A),pcsr(B)] /D

endif
End

PauseForUser Advanced Cursor Example
Now for something a bit more complex. Here we modify the preceding example to include a Cancel button.
For this, we need to return information about which button was pressed. Although we could do this by cre-
ating a single global variable in the root data folder, we use a slightly more complex technique using a tem-
porary data folder. This technique is especially useful for more complex panels with multiple output
variables because it eliminates name conflict issues. It also allows much easier clean up because we can kill
the entire data folder and everything in it with just one operation.
Function UserCursorAdjust(graphName)

String graphName

DoWindow/F $graphName // Bring graph to front
if (V_Flag == 0) // Verify that graph exists

Abort "UserCursorAdjust: No such graph."
return -1

endif

NewDataFolder/O root:tmp_PauseforCursorDF
Variable/G root:tmp_PauseforCursorDF:canceled= 0

NewPanel/K=2 /W=(139,341,382,450) as "Pause for Cursor"
DoWindow/C tmp_PauseforCursor // Set to an unlikely name
AutoPositionWindow/E/M=1/R=$graphName // Put panel near the graph

DrawText 21,20,"Adjust the cursors and then"
DrawText 21,40,"Click Continue."
Button button0,pos={80,58},size={92,20},title="Continue"
Button button0,proc=UserCursorAdjust_ContButtonProc
Button button1,pos={80,80},size={92,20}
Button button1,proc=UserCursorAdjust_CancelBProc,title="Cancel"

PauseForUser tmp_PauseforCursor,$graphName

NVAR gCaneled= root:tmp_PauseforCursorDF:canceled
Variable canceled= gCaneled // Copy from global to local

// before global is killed
KillDataFolder root:tmp_PauseforCursorDF

return canceled
End

Function UserCursorAdjust_ContButtonProc(ctrlName) : ButtonControl
String ctrlName

Chapter IV-6 — Interacting with the User

IV-143

DoWindow/K tmp_PauseforCursor // Kill self
End

Function UserCursorAdjust_CancelBProc(ctrlName) : ButtonControl
String ctrlName

Variable/G root:tmp_PauseforCursorDF:canceled= 1
DoWindow/K tmp_PauseforCursor // Kill self

End

Function Demo()
Make/O jack;SetScale x,-5,5,jack
jack= exp(-x^2)+gnoise(0.1)
DoWindow Graph0
if (V_Flag==0)

Display jack
ShowInfo

endif
Variable rval= UserCursorAdjust("Graph0")
if (rval == -1) // Graph name error?

return -1;
endif
if (rval == 1) // User canceled?

DoAlert 0,"Canceled"
return -1;

endif
CurveFit gauss,jack[pcsr(A),pcsr(B)] /D

End

PauseForUser Control Panel Example
This example illustrates using a control panel as a modal dialog via PauseForUser. This technique is useful
when you need a more sophisticated modal user interface than provided by the simple input dialog.
We started by manually creating a control panel. When the panel design was finished, we closed it to create
a recreation macro. We then used code copied from the recreation macro in the DoMyInputPanel function
and deleted the recreation macro.
Function UserGetInputPanel_ContButton(ctrlName) : ButtonControl

String ctrlName

DoWindow/K tmp_GetInputPanel // kill self
End

// Call with these variables already created and initialized:
// root:tmp_PauseForUserDemo:numvar
// root:tmp_PauseForUserDemo:strvar
Function DoMyInputPanel()

NewPanel /W=(150,50,358,239)
DoWindow/C tmp_GetInputPanel // set to an unlikely name
DrawText 33,23,"Enter some data"
SetVariable setvar0,pos={27,49},size={126,17},limits={-Inf,Inf,1}
SetVariable setvar0,value= root:tmp_PauseForUserDemo:numvar
SetVariable setvar1,pos={24,77},size={131,17},limits={-Inf,Inf,1}
SetVariable setvar1,value= root:tmp_PauseForUserDemo:strvar
Button button0,pos={52,120},size={92,20}
Button button0,proc=UserGetInputPanel_ContButton,title="Continue"

PauseForUser tmp_GetInputPanel
End

Function Demo1()
NewDataFolder/O root:tmp_PauseForUserDemo
Variable/G root:tmp_PauseForUserDemo:numvar= 12
String/G root:tmp_PauseForUserDemo:strvar= "hello"

Chapter IV-6 — Interacting with the User

IV-144

DoMyInputPanel()

NVAR numvar= root:tmp_PauseForUserDemo:numvar
SVAR strvar= root:tmp_PauseForUserDemo:strvar

printf "You entered %g and %s\r",numvar,strvar

KillDataFolder root:tmp_PauseForUserDemo
End

Progress Windows
Sometimes when performing a long calculation, you may want to display an indication that the calculation
is in progress, perhaps showing how far along it is, and perhaps providing an abort button. As of Igor Pro
6.1, you can use a control panel window for this task using the DoUpdate /E and /W flags and the mode=4
setting for ValDisplay.

DoUpdate /W=win /E=1 marks the specified window as a progress window that can accept mouse events
while user code is executing. The /E flag need be used only once to mark the panel but it does not hurt to
use it in every call. This special state of the control panel is automatically cleared when procedure execution
finishes and Igor's outer loop again runs.

For a window marked as a progress window, DoUpdate sets V_Flag to 2 if a mouse up happened in a
button since the last call. When this occurs, the full path to the subwindow containing the button is stored
in S_path and the name of the control is stored in S_name.

Here is a simple example that puts up a progress window with a progress bar and a Stop button. Try each
of the four input flag combinations.

// ProgressDemo1(0,0)
// ProgressDemo1(1,0)
// ProgressDemo1(0,1)
// ProgressDemo1(1,1)
Function ProgressDemo1(indefinite, useIgorDraw)

Variable indefinite
Variable useIgorDraw// True to use Igor's own draw method rather than native

NewPanel /N=ProgressPanel /W=(285,111,739,193)
ValDisplay valdisp0,pos={18,32},size={342,18}
ValDisplay valdisp0,limits={0,100,0},barmisc={0,0}
ValDisplay valdisp0,value= _NUM:0
if(indefinite)

ValDisplay valdisp0,mode= 4// candy stripe
else

ValDisplay valdisp0,mode= 3// bar with no fractional part
endif
if(useIgorDraw)

ValDisplay valdisp0,highColor=(0,65535,0)
endif
Button bStop,pos={375,32},size={50,20},title="Stop"
DoUpdate /W=ProgressPanel /E=1// mark this as our progress window

Variable i,imax= indefinite ? 10000 : 100
for(i=0;i<imax;i+=1)

Variable t0= ticks
do
while(ticks < (t0+3))
if(indefinite)

ValDisplay valdisp0,value= _NUM:1,win=ProgressPanel
else

ValDisplay valdisp0,value= _NUM:i+1,win=ProgressPanel

Chapter IV-6 — Interacting with the User

IV-145

endif
DoUpdate /W=ProgressPanel
if(V_Flag == 2)// we only have one button and that means stop

break
endif

endfor
KillWindow ProgressPanel

End

When performing complex calculations, it is often difficult to insert DoUpdate calls in the code. In this case,
you can use a window hook that responds to event #23, spinUpdate. This is called at the same time that the
beachball icon in the status bar spins. The hook can then update the window's control state and then call
DoUpdate/W on the window. If the window hook returns non-zero, then an abort is performed. If you
desire a more controlled quit, you might set a global variable that your calculation code can test

The following example provides an indefinite indicator and an abort button. Note that if the abort button
is pressed, the window hook kills the progress window since otherwise the abort would cause the window
to remain.

// Example: ProgressDemo2(100)
Function ProgressDemo2(nloops)

Variable nloops

Variable useIgorDraw=0 // set true for Igor draw method rather than native

NewPanel/FLT /N=myProgress/W=(285,111,739,193) as "Calculating..."
ValDisplay valdisp0,pos={18,32},size={342,18}
ValDisplay valdisp0,limits={0,100,0},barmisc={0,0}
ValDisplay valdisp0,value= _NUM:0
ValDisplay valdisp0,mode=4 // candy stripe
if(useIgorDraw)

ValDisplay valdisp0,highColor=(0,65535,0)
endif
Button bStop,pos={375,32},size={50,20},title="Abort"
SetActiveSubwindow _endfloat_
DoUpdate/W=myProgress/E=1 // mark this as our progress window

SetWindow myProgress,hook(spinner)=MySpinnHook

Variable t0= ticks,i
for(i=0;i<nloops;i+=1)

PerformLongCalc(1e6)
endfor
Variable timeperloop= (ticks-t0)/(60*nloops)

KillWindow myProgress

print "time per loop=",timeperloop
End

Function MySpinnHook(s)
STRUCT WMWinHookStruct &s

if(s.eventCode == 23)
ValDisplay valdisp0,value= _NUM:1,win=$s.winName
DoUpdate/W=$s.winName
if(V_Flag == 2) // we only have one button and that means abort

KillWindow $s.winName
return 1

endif
endif

Chapter IV-6 — Interacting with the User

IV-146

return 0
End

Function PerformLongCalc(nmax)
Variable nmax

Variable i,s
for(i=0;i<nmax;i+=1)

s+= sin(i/nmax)
endfor

End

Control Panels and Event-Driven Programming
The CalcDiagDialog function shown under The Simple Input Dialog on page IV-132 creates a modal
dialog. “Modal” means that the function retains complete control until the user clicks Cancel or Continue.
The user can not activate another window or choose a menu item until the dialog is dismissed.

This section shows how to implement the same functionality using a control panel as a modeless dialog.
“Modeless” means that the user can activate another window or choose a menu item at any time. The mod-
eless window accepts input whenever the user wants to enter it but does not block the user from accessing
other windows.

The control panel looks like this:

The code implementing this control panel is given below. Before we look at the code, here is some explana-
tion of the thinking behind it.

The X Component and Y Component controls are SetVariable controls. We attach each SetVariable control
to a global variable so that, if we kill and later recreate the panel, the SetVariable control is restored to its
previous state. In other words, we use global variables to remember settings across invocations of the panel.
To keep the global variables from cluttering the user’s space, we bury them in a data folder located at
root:Packages:DiagonalControlPanel.

The DisplayDiagonalControlPanel routine creates the data folder and the global variables if they do not
already exist. DisplayDiagonalControlPanel creates the control panel or, if it already exists, just brings it to
the front.

We added a menu item to the Macros menu so the user can easily invoke DisplayDiagonalControlPanel.

We built the control panel manually using techniques explained in Chapter III-14, Controls and Control
Panels. Then we closed it so Igor would create a display recreation macro which we named DiagonalCon-
trolPanel. We then manually tweaked the macro to attach the SetVariable controls to the desired globals and
to set the panel’s behavior when the user clicks the close button by adding the /K=1 flag.

Here are the procedures.
// Add a menu item to display the control panel.
Menu "Macros"

"Display Diagonal Control Panel", DisplayDiagonalControlPanel()
End

Chapter IV-6 — Interacting with the User

IV-147

// This is the display recreation macro, created by Igor
// and then manually tweaked. The parts that were tweaked
// are shown in bold. NOTE: Some lines are wrapped to fit on the page.
Window DiagonalControlPanel() : Panel

PauseUpdate; Silent 1 // building window...

NewPanel/W=(162,95,375,198)/K=1 as "Compute Diagonal"

SetVariable XSetVar,pos={22,11},size={150,15},title="X Component:"
SetVariable XSetVar,limits={-Inf,Inf,1},value=

root:Packages:DiagonalControlPanel:gXComponent

SetVariable YSetVar,pos={22,36},size={150,15},title="Y Component:"
SetVariable YSetVar,limits={-Inf,Inf,1},value=

root:Packages:DiagonalControlPanel:gYComponent

Button ComputeButton,pos={59,69},size={90,20},
proc=ComputeDiagonalProc,title="Compute"

EndMacro

// This is the action procedure for the Compute button.
// We created it using the Button dialog.
Function ComputeDiagonalProc(ctrlName) : ButtonControl

String ctrlName

DFREF dfr = root:Packages:DiagonalControlPanel

NVAR gXComponent = dfr:gXComponent
NVAR gYComponent = dfr:gYComponent
Variable diagonal
diagonal = sqrt(gXComponent^2 + gYComponent^2)
Printf "Diagonal=%g\r", diagonal

End

// This is the top level routine which makes sure that the globals
// and their enclosing data folders exist and then makes sure that
// the control panel is displayed.
Function DisplayDiagonalControlPanel()

// If the panel is already created, just bring it to the front.
DoWindow/F DiagonalControlPanel
if (V_Flag != 0)

return 0
endif

String dfSave = GetDataFolder(1)

// Create a data folder in Packages to store globals.
NewDataFolder/O/S root:Packages
NewDataFolder/O/S root:Packages:DiagonalControlPanel

// Create global variables used by the control panel.
Variable xComponent = NumVarOrDefault(":gXComponent", 10)
Variable/G gXComponent = xComponent
Variable yComponent = NumVarOrDefault(":gYComponent", 20)
Variable/G gYComponent = yComponent

// Create the control panel.
Execute "DiagonalControlPanel()"

SetDataFolder dfSave
End

To try this example, copy all of the procedures and paste them into the procedure window of a new exper-
iment. Close the procedure window to compile it and then choose Display Diagonal Control Panel from the
Macros menu. Next enter values in the text entry items and click the Compute button. Close the control

Chapter IV-6 — Interacting with the User

IV-148

panel and then reopen it using the Display Diagonal Control Panel menu item. Notice that the values that
you entered were remembered. Use the Data Browser to inspect the root:Packages:DiagonalControlPanel
data folder.

Although this example is very simple, it illustrates the process of creating a control panel that functions as
a modeless dialog. There are many more examples of this in the Examples folder. You can access them via
the File→Example Experiments submenu.

See Chapter III-14, Controls and Control Panels, for more information on building control panels.

Detecting a User Abort
If you have written a user-defined function that takes a long time to execute, you may want to provide a
way for the user to abort it. One solution is to display a progress window as discussed under Progress
Windows on page IV-144.
Here is a simple alternative using the escape key:
Function PressEscapeToAbort(phase, title, message)

Variable phase // 0: Display control panel with message.
// 1: Test if Escape key is pressed.
// 2: Close control panel.

String title // Title for control panel.
String message // Tells user what you are doing.

if (phase == 0) // Create panel
DoWindow/F PressEscapePanel
if (V_flag == 0)

NewPanel/K=1 /W=(100,100,350,200)
DoWindow/C PressEscapePanel
DoWindow/T PressEscapePanel, title

endif
TitleBox Message,pos={7,8},size={69,20},title=message
String abortStr = "Press escape to abort"
TitleBox Press,pos={6,59},size={106,20},title=abortStr
DoUpdate

endif

if (phase == 1) // Test for Escape key
Variable doAbort = 0
if (GetKeyState(0) & 32) // Is Escape key pressed now?

doAbort = 1
else

if (strlen(message) != 0) // Want to change message?
TitleBox Message,title=message
DoUpdate

endif
endif
return doAbort

endif

if (phase == 2) // Kill panel
DoWindow/K PressEscapePanel

endif

return 0
End

Function Demo()
// Create panel
PressEscapeToAbort(0, "Demonstration", "This is a demo")

Chapter IV-6 — Interacting with the User

IV-149

Variable startTicks = ticks
Variable endTicks = startTicks + 10*60
Variable lastMessageUpdate = startTicks

do
String message
message = ""
if (ticks>=lastMessageUpdate+60) // Time to update message?

Variable remaining = (endTicks - ticks) / 60
sprintf message, "Time remaining: %.1f seconds", remaining
lastMessageUpdate = ticks

endif

if (PressEscapeToAbort(1, "", message))
Print "Test aborted by Escape key."
break

endif
while(ticks < endTicks)

PressEscapeToAbort(2, "", "") // Kill panel.
End

Creating a Contextual Menu
You can use the PopupContextualMenu operation to create a pop-up menu in response to a contextual
click (control-click (Macintosh) or right-click). You would do this from a window hook function or from the
action procedure for a control in a control panel.

In this example, we create a control panel with a list. When the user right-clicks on the list, Igor sends a
mouse-down event to the listbox procedure, TickerListProc in this case. The listbox procedure uses the
eventMod field of the WMListboxAction structure to determine if the click is a right-click. If so, it calls Han-
dleTickerListRightClick which calls PopupContextualMenu to display the contextual menu.

Menu "Macros"

"Show Demo Panel", ShowDemoPanel()
End

static Function HandleTickerListRightClick()
String popupItems = ""
popupItems += "Refresh;"

PopupContextualMenu popupItems
strswitch (S_selection)

case "Refresh":
DoAlert 0, "Here is where you would refresh the ticker list."
break

endswitch
End

Function TickerListProc(lba) : ListBoxControl
STRUCT WMListboxAction &lba

switch (lba.eventCode)
case 1: // Mouse down

if (lba.eventMod & 0x10)// Right-click?
HandleTickerListRightClick()

endif
break

endswitch

Chapter IV-6 — Interacting with the User

IV-150

return 0
End

Function ShowDemoPanel()
DoWindow/F DemoPanel
if (V_flag != 0)

return 0 // Panel already exists.
endif

// Create panel data.
Make/O/T ticketListWave = {{"AAPL","IBM","MSFT"}, {"90.25","86.40","17.17"}}

// Create panel.
NewPanel /N=DemoPanel /W=(321,121,621,321) /K=1
ListBox TickerList,pos={48,16},size={200,100},fSize=12
ListBox TickerList,listWave=root:ticketListWave
ListBox TickerList,mode= 1,selRow= 0, proc=TickerListProc

End

Cursors as Input Device
You can use the cursors on a trace in a graph to identify the data to be processed.

The examples shown above using PauseForUser are modal - the user adjusts the cursors in the middle of
procedure execution and can do nothing else. This technique is non-modal — the user is expected to adjust
the cursors before invoking the procedure.

This function does a straight-line curve fit through the data between cursor A (the round cursor) and cursor
B (the square cursor). This example is written to handle both waveform and XY data.
Function FitLineBetweenCursors()

Variable isXY

// Make sure both cursors are on the same wave.
WAVE wA = CsrWaveRef(A)
WAVE wB = CsrWaveRef(B)
String dfA = GetWavesDataFolder(wA, 2)
String dfB = GetWavesDataFolder(wB, 2)
if (CmpStr(dfA, dfB) != 0)

Abort "Both cursors must be on the same wave."
return -1

endif

// Find the wave that the cursors are on.
WAVE yWave = CsrWaveRef(A)

// Decide if this is an XY pair.
WAVE xWave = CsrXWaveRef(A)
isXY = WaveExists(xWave)

if (isXY)
CurveFit line yWave(xcsr(A),xcsr(B)) /X=xWave /D

else
CurveFit line yWave(xcsr(A),xcsr(B)) /D

endif
End

This technique is demonstrated in the Fit Line Between Cursors example experiment in the “Exam-
ples:Curve Fitting” folder.

Advanced programmers can set things up so that a hook function is called whenever the user adjusts the
position of a cursor. For details, see Cursors — Moving Cursor Calls Function on page IV-316.

Chapter IV-6 — Interacting with the User

IV-151

Marquee Menu as Input Device
A marquee is the dashed-line rectangle that you get when you click and drag diagonally in a graph or page
layout. It is used for expanding and shrinking the range of axes, for selecting a rectangular section of an
image, and for specifying an area of a layout. You can use the marquee as an input device for your proce-
dures. This is a relatively advanced technique.

This menu definition adds a user-defined item to the graph marquee menu:
Menu "GraphMarquee"

"Print Marquee Coordinates", PrintMarqueeCoords()
End

To add an item to the layout marquee menu, use LayoutMarquee instead of GraphMarquee.

When the user chooses Print Marquee Coordinates, the following function runs. It prints the coordinates of
the marquee in the history area. It assumes that the graph has left and bottom axes.
Function PrintMarqueeCoords()

String format
GetMarquee/K left, bottom
format = "flag: %g; left: %g; top: %g; right: %g; bottom: %g\r"
printf format, V_flag, V_left, V_top, V_right, V_bottom

End

The use of the marquee menu as in input device is demonstrated in the Marquee Demo and Delete Points
from Wave example experiments.

Polygon as Input Device
This technique is similar to the marquee technique except that you can identify a nonrectangular area. It is
implemented using FindPointsInPoly operation (see page V-213).

Chapter IV-6 — Interacting with the User

IV-152

	Interacting with the User
	Overview
	Modal and Modeless User Interface Techniques

	The Simple Input Dialog
	Pop-Up Menus in Simple Dialogs
	Saving Parameters for Reuse
	Multiple Simple Input Dialogs
	Help For Simple Input Dialogs

	Displaying an Open File Dialog
	Displaying a Multi-Selection Open File Dialog
	Open File Dialog File Filters

	Displaying a Save File Dialog
	Save File Dialog File Filters

	Using Open in a Utility Routine
	Pause For User
	PauseForUser Simple Cursor Example
	PauseForUser Advanced Cursor Example
	PauseForUser Control Panel Example

	Progress Windows
	Control Panels and Event-Driven Programming
	Detecting a User Abort
	Creating a Contextual Menu
	Cursors as Input Device
	Marquee Menu as Input Device
	Polygon as Input Device

